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Abstract
All criticisms by Steinle-Neumann and Cohen of the correctness of our
calculations of equilibrium structure and elastic constants under pressure from
the Gibbs free energy are answered and the criticisms are rejected. The
difference between the free energy and the internal energy as functions of
structure is described to clarify the use of the free energy. The meaning of
elastic constants in a system under pressure is discussed in order to derive the
basic quadratic expansion of the free energy in the strains. The coefficients
in the expansion are the elastic constants under pressure and are in agreement
with well-known work. We give reasons why calculations based on the Gibbs
free energy are simpler and more accurate than the usual calculations based on
minima of the energy at constant volume.

Our reply to the comment by Steinle-Neumann and Cohen (SC) on our letter [1] permits us
to clarify the use of the Gibbs free energy G for elasticity under pressure and to correct some
features of our letter. However, we reject all the criticisms made in the comment, including
the remarks in the abstract that we are incorrect in our statements about equilibrium and the
minima of G and E (the internal energy) and about the calculation of elastic constants.

SC are wrong in the first paragraph (paragraph 1) of the comment when they criticize [1]
as saying that G must be used to find equilibrium structure under pressure p. We just wish to
say that it is simpler than procedures based on E at constant volume V . Also, we now believe
use of G at constant p is probably a more accurate procedure; one reason is that the equation
of state p(V ) is not needed to find the equilibrium value of p, since p is a given quantity that
remains constant while the equilibrium structure is determined.

In paragraph 1 line 8 (l. 8) SC say that our plot in figure 1 in [1] of E for bcc Fe along the
epitaxial Bain path (EBP) in the tetragonal structure plane (coordinates a and c or c/a and V )
is ‘a result of misusing elementary thermodynamics’. On the contrary, SC have misunderstood
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the purpose of figure 1. The purpose is to show that E does not have a minimum at equilibrium
along the EBP in the tetragonal structure plane, thereby illustrating our statement that E is
not a minimum at equilibrium as a function of structure at a given p, whereas G is such a
minimum.

The statement that E is not a minimum at equilibrium at any p should have been discussed
at greater length in [1], since the behaviour of E is complicated and there is an important
difference between E and G to make clear. At equilibrium the slope of E in the c direction
is proportional to p, which is large at high p, and the slope of E in the a direction is also
proportional to p. But on the path between the c and a directions along which V ∝ ca2 is
constant, E does have a minimum at equilibrium and the slope vanishes. This minimum at
equilibrium is a consequence of the minimum theorem for E at constant V and S quoted by
SC. The rapidly changing slope of E with direction in the structure plane is the reason for our
statement that E does not have a minimum at equilibrium,whereas the slope of G at equilibrium
vanishes in all directions in the structure plane and G has a simple two-dimensional minimum.

Previous papers have mainly found equilibrium from the minimum of E along the special
path of constant V . However, the use of a minimum of E(c/a) at constant V has encountered
difficulties in some cases, such as in the study of anomalous structure in hcp Zn and Cd
under pressure [2]. The E(c/a) curves at constant V have flat bottoms or double minima in
the pressure range of the anomalies (figure 10 of [2]), which make the equilibrium structure
uncertain. Hence an advantage in using G to find equilibrium is that the minima are well
defined.

It is inconsistent of SC to say we are incorrect in our statement that G has a minimum
at equilibrium at a given pressure and E does not (abstract), when they say explicitly in
paragraph 1 that ‘there is a minimum principle . . .for the Gibbs free energy G = E−T S+PV at
constant P and T ’ (which is in fact the basis of our formulation), but that ‘there is no minimum
principle for E . . . at constant P’, which agrees with our statement about E .

In paragraph 2 of the comment SC make the more serious criticism that all our elastic
constants calculated from second strain derivatives of G are incorrect. Regardless of the
derivation, this assertion is completely refuted by the fact, shown explicitly for the six tetragonal
elastic constants in [1] and derived in [3], that our elastic constants ci j for tetragonal structure
are identical with those in the classic paper of Barron and Klein (BK) [4].

BK define the ci j in a material under general initial stress as the multipliers of any
introduced strain that give the additional stress produced by that strain. These ci j then enter
the equation of motion in the stressed material, since the gradients of the additional stress drive
the system back toward equilibrium at the given general stress. By applying invariance of
the stress–strain relation under rotation BK prove that the ci j for uniform stress (hydrostatic
pressure) is the sum of second strain derivatives of E plus a pressure correction proportional
to p ([4], equation (5.5)). Our second strain derivatives of G are from its definition second
strain derivatives of E plus second strain derivatives of pV at constant p, which we show give
the same pressure corrections as BK for tetragonal and hexagonal structures, i.e., our ci j are
the same as BK’s.

If SC accept the formulae of BK for the ci j (SC use a formula from BK in their equation (1)),
they must accept our formulae. The agreement of our ci j with those of BK checks the validity of
our ci j as second strain derivatives of G,which we derive more simply than BK from application
of basic thermodynamic theory. From our derivation follows the important expansion for G
around equilibrium

δG

V
= 1

2

∑

i j

ci jεiε j . (1)
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The positive definiteness of this quadratic form in the strains is the criterion for stability (or
metastability) of a particular equilibrium structure.

In paragraph 2 (l. 8) SC give as a reason for calling our ci j incorrect that we have ‘ignored
the fact that the pressure and shear stresses vary as a function of strain’. This statement is
a misunderstanding of the meaning of elastic constants in a material under pressure. When
strains are introduced into the equilibrium structure, such as an acoustic wave, the pressure,
which is maintained by an external source, does not change, in agreement with the principle
that at equilibrium G is a minimum at constant p. However, there is an additional stress
produced by the strains, which BK relate to the strains by the ci j , as described above.

In paragraph 2 (l. 4) SC say about our work in [3] on bcc Fe ‘they find a shear instability
at 150 GPa using G(c′) but not for E(c̄′), implying that previous computational estimates of
elastic constants at pressure are incorrect’. We are not aware of any previous calculation of
c′ for bcc Fe that found the p at which c′ goes negative. Our plot of c′(p) and c̄′(p) in [1]
shows the great importance of the pressure correction at high p in decreasing the stability of
the bcc phase of Fe. The calculation in [5] cited by SC (paragraph 1 (l. 13)) as ‘the correct
analysis’ does not evaluate c′, and although [5] shows an instability occurs, it does not find the
p at which the instability occurs.

We do not understand the criticism in paragraph 2 (l. 8) that ‘they did not obtain any
thermodynamically valid second derivatives by their finite difference procedure. . . they did
not even obtain the derivatives (1/V )∂2G(P)/∂εi∂ε j ’. This criticism seems to question our
numerical procedure for obtaining the second strain derivatives of G at equilibrium, which are
the ci j in equation (1). But the procedure is simple mathematics, which we can summarize
briefly as follows: for tetragonal or hexagonal ci j choose numerical values for six independent
strains; calculate the strained atomic coordinates (by multiplying the matrix of orthogonal
coordinates of the atoms in the unit cell by the first-order strain matrix [6], p. 99); then
calculate the δG for these strains from δE and δV . The six choices of strains give six linear
equations for the six ci j . The simplest choices take the strains one and two at a time. By giving
the same strains several values the part of δG quadratic in the strains can be separated from
the higher powers of the strains.

In addition to the pressure correction that the use of G automatically includes, hcp
structures, which have two atoms in the primitive unit cell, require an inner relaxation of
the second atom, which must be considered for all strains that break the hexagonal symmetry;
our procedure for calculating the effects of relaxation on the ci j is given in [7]. The relaxation
will always reduce δG and is required even for p = 0, but is frequently neglected, as it is
in [8–11].

The remarks after paragraph 2 of the comment are mainly not relevant to criticisms of our
work. However, SC show that we should make a change in the references in [1] that need a
pressure correction. We comment briefly on the further points raised by SC.

In paragraph 3 SC mention confusion in the definition of elastic constants. However,
there is no confusion about our elastic constants under pressure; they are the proportionality
constants in the relation between introduced strain and the consequent additional stresses that
give deviations from the pressure and they enter the equations of motion of the material under
pressure.

In paragraph 4 SC note that a Gibbs free energy is not definable under non-hydrostatic
stress. This difficulty is not one that we have considered in our papers so far. However, there is
some evidence that a function can be defined with the same minimum property at equilibrium
for anisotropic stress that the Gibbs free energy has for isotropic stress.

A re-examination of the calculation of the elastic constants in [10–12],which we said in [1]
needed pressure corrections, should not have included [10], whose authors include SC. We did
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not realize at that time that the second-order term added to the first-order strain matrix to keep
V constant would make the pressure correction unnecessary, as SC show in their comment,
paragraphs 5–7, using a formula from BK. In a later paper on hcp Fe [7] we accepted the
volume-conserving procedure in [10] and only criticized [10] for omission of inner relaxations
in hcp structure. However, [11] and [12] compute elastic constants under pressure from E
with first-order strains and do not mention pressure corrections, hence require them. We note
that SC in their equation (3) agree with our statement that [11] requires a pressure correction.

In paragraph 8 SC mention that computations based on E of the frequencies of long
wavelength Raman-active optical modes of hcp lattices agree well with experiment, which
supports the use of E for calculation of elastic quantities without making pressure corrections.
However, in optical mode vibrations there is no change in V , hence E and G are equivalent
for calculating these mode frequencies.

In conclusion, although calculations of E at constant V can be used to find equilibrium
structure and elastic constants for a crystal under pressure, we believe that it is simpler and
more accurate to use G at constant p for those properties and that there is no doubt about the
validity of the procedure.
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